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Observation Encoder

Communication Block

Action Network

• Agents positions
• Obstacle positions
• Heuristic encodings
• Last-step messages 

• Hard attention mechanism to 
filter out irrelevant agents

• Soft attention to calculate 
relative importance

Our Solution: Hierarchical Reinforcement Learning

Performance Comparison of HELSA Against SOTA Learning-based Methods

Does the two-stage attention communication lead to better coordination?

How does the partitioning granularity effect the performance of HELSA?

Overview of the Proposed Framework: HELSA

The Lower-Level Controller: Communication-based Inter-Region Planning Method

Ø Counterparts
• PRIMAL [1] (R-AL, 2019)
• DHC [2] (ICRA, 2021)
• DCC [3] (RA-L, 2021)

Ø Evaluation Metrics
• Success Rates (SR)
• Average Steps (AS)
• Makespans (MS)
• Collisions with Agents (CA)
• Collisions with Obstacles (CO)

Ø Average steps at various problem scales Ø Success rates at various problem scales 
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Conclusions

Future Work

Key Challenges in Large-Scale MARL

Grid world

Observation encodings from agent’s perspective

Obstacles Agents Heuristic Maps

2. Partial Observability

1. Sparse Rewards in Large-Scale Reinforcement Learning
𝑅 𝒂 = 𝟙 Execute +, 𝒂 =⋆
𝒂! = (→, ↑, ↑,→)
𝒂" = (←,→,→, ↑, ↑,→)
𝒂# = (↑,→,→, ↑)
𝑅 𝒂! = 𝑅 𝒂" = 𝑅 𝒂# = 1

Ø Average steps of different region sizesØ Success rates of different region sizes

Ø Empirical evaluation of the adopted lower-level controller with other ablations in terms of success rates and average steps.

• We propose the HELSA framework to tackle the problem of sparse reward 
and long horizon in large-scale multi-agent pathfinding problems.

• Experiments show that our approach performs significantly better in large-
scale multi-robot routing tasks in success rates, makespans, and collision 
rates than state-of-the-art learning-based planners.

• The key idea of our hierarchical framework is beneficial to a number of similar 
problems with long horizon in terms of time and large scale in terms of space.

• In the future, we will evaluate our framework in different experimental 
scenarios, especially those with different agent and obstacle densities.

• We are interested in extending it from a discrete grid world to a continuous one. 
• Experiments in real-world multi-robot systems are also on the agenda.

Ø Why does the partitioning granularity matter?
• The significance of partitioning granularity lies 

in the trade-offs it presents.
• Too small, the upper controllers are strained.
• Too large, the hierarchical finesse is lost.

Ø How does region size affect the solution? 
• Optimal performance is achieved when the 

region size mirrors that of the agent’s FOV.
• Deviating from this size, leads to suboptimal 

results, forming a mountain-valley distribution.

Background

• A common critic performs a 
reasonable credit assignment

Heuristic Maps

The Upper-Level Controller: IQL-based Subgoal Planner

• The red flags are the temporary subgoals
• The gray grids represent obstacles. 
• The four channels indicate whether the 

agent gets closer to its subgoals by taking 
a certain action at these locations within 
the agent’s FOV respectively.

Heuristic Maps for the Green Agent

Ø Residual Neural Network Empowered Observation Encoder
• Extended from DHC [2], the heuristic channels are adopted 

considering all subgoals provide rich rational knowledge.
• All heuristic maps can be computed and stored in advance.
• The feature extractor has great generalization capability.

Ø Two-Stage Attentional Communication Mechanism
• Each agent communicates with its neighboring agents.
• Inspired from G2ANet [4], a two-stage attention is adopted.
• The gumble-softmax is utilized to enable back propagation.
• A query-key mechanism is employed to weigh relevance.

Ø Training via Counterfactual Multi-Agent Policy Gradients
• COMA [5] is employed as our low-level learning scheme.
• For each agent, an advantage function is computed

𝐴4(𝐬, 𝐚) = 𝑄(𝐬, 𝐚) − ∑5!"𝜋4 𝑎4 ∣ 𝜏4 𝑄 𝐬, 𝐚64, 𝐚47

• The centralized critic reasons the contribution of each agent.
• A reasonable multi-agent credit assignment is achieved. 

Multi-Agent Path Finding (MAPF) Ø Observation Representation
• Regional Agents Count
• Regional Goals Count
• Heuristic Maps

Ø Subgoal (Macro-Action)
• 𝒢4 = ℐ8! , 𝛽8! , 𝜋8!
• Denotes the next region for 

each agent to reach
Ø Learning Scheme

• Independent Q-Learning
• Multi-step bootstrapping

Ø Distributed Priority ER
• Improve sample efficiency

Ø Meta-Controller: Intra-Region Planning
• Map’s Meta Controller
• Partitions maps into regions
• Optimizes region-wise paths

Ø Subpolicies: Inter-Region Planning
• Path‘s Fine-Tuner
• Refines inter-region paths 
• Ensures collision-free navigation

given

graph

goals

agents

solution
collision-free paths

vertex conflict edge conflict

obstacles

optimize
makespan (flowtime)

total travel time/distance

01 Map Partition

Divide the space into a series of 
regions based on hyperparameters.

02 Temporal Abstraction 03
Decompose long-term 
tasks on a temporal scale 
into short-term tasks
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