¹ Network and Machine Intelligence Lab, School of Software Engineering, Tongji University, P.R. China ² School of Electronics Engineering and Computing Science, Peking University, P.R. China

Model	8 a	gents, 40	-sized map	o, 0.2 den	32 agents, 80-sized map, 0.2 densit						
	SR ↑	AS \downarrow	MS \downarrow	$CA\downarrow$	CO ↓	SR ↑	AS \downarrow	MS \downarrow	$CA\downarrow$	(
PRIMAL [4]	1.0	56.49	98.90	0.42	0.0	0.88	164.39	305.73	4.12		
DHC [6]	1.0	31.40	55.77	0.38	0.0	0.98	69.18	139.77	3.20		
DCC [7]	1.0	28.84	50.49	0.40	0.0	0.98	64.47	134.34	5.91		
HELSA	1.0	29.71	52.29	0.21	0.0	1.0	65.85	136.17	0.54		
Model	288 a	igents, 24	0-sized m	ap. 0.2 de	512 agents, 320-sized map, 0.2 dens						
							" Benno, e		map, 0.2 a		
widdei	SR ↑	AS ↓	$MS\downarrow$	CA↓	CO↓	SR ↑	$AS \downarrow$	MS ↓	$CA\downarrow$	(
PRIMAL [4]	SR ↑ 0.0	AS ↓ 530.06	MS ↓ 1536.0	CA ↓ 593.59	CO ↓ 34.48	SR ↑ 0.0	AS ↓ 736.50	$\frac{MS \downarrow}{2048.0}$	$\frac{CA \downarrow}{1498.20}$	(1	
PRIMAL [4] DHC [6]	SR ↑ 0.0 0.70	AS ↓ 530.06 193.13	MS ↓ 1536.0 804.55	CA ↓ 593.59 99.52	CO ↓ 34.48 0.01	SR ↑ 0.0 0.53	AS ↓ 736.50 252.62	MS ↓ 2048.0 1304.48	$ \begin{array}{r} \text{CA} \downarrow \\ \hline \hline 1498.20 \\ 236.22 \end{array} $	1	
PRIMAL [4] DHC [6] DCC [7]	SR ↑ 0.0 0.70 0.19	AS ↓ 530.06 193.13 235.32	MS ↓ 1536.0 804.55 1375.04	CA ↓ 593.59 99.52 151.88	CO ↓ 34.48 0.01 12.97	SR ↑ 0.0 0.53 0.04	AS ↓ 736.50 252.62 300.78	MS ↓ 2048.0 1304.48 2020.76	$ \begin{array}{r} \text{CA} \downarrow \\ \hline 1498.20 \\ 236.22 \\ 423.40 \end{array} $	1	
PRIMAL [4] DHC [6] DCC [7] HELSA	SR ↑ 0.0 0.70 0.19 0.93	AS ↓ 530.06 193.13 235.32 175.56	MS ↓ 1536.0 804.55 1375.04 629.58	CA ↓ 593.59 99.52 151.88 49.41	CO ↓ 34.48 0.01 12.97 0.03	SR ↑ 0.0 0.53 0.04 0.87	AS ↓ 736.50 252.62 300.78 221.17	MS ↓ 2048.0 1304.48 2020.76 935.99	CA ↓ 1498.20 236.22 423.40 101.78	(1' 5	

HELSA: Hierarchical Reinforcement Learning with Spatiotemporal Abstraction for Large-Scale Multi-Agent Path Finding

- - - - -

0.74 268.83 211.15 269.67

193.39 0.44 323.95 0.04 433.73 0.0 615.19 0.45 332.51 0.43 248.67 0.12 477.53 0.01 633.55 0.0 883.10 0.29 476.40

Method	w/ hierarchy?	80-sized map		160-sized map		240-sized map		320-sized map		400-sized map		Avg.	
		SR ↑	AS \downarrow	SR ↑	AS \downarrow	SR ↑	AS \downarrow	SR ↑	AS \downarrow	SR ↑	AS \downarrow	SR ↑	AS \downarrow
COMA+Comm	\checkmark	1.0	65.85	0.97	126.51	0.93	175.56	0.87	221.17	0.74	268.83	0.90	171.58
+Attention		0.98	67.25	0.76	141.95	0.41	219.03	0.07	287.99	0.0	347.63	0.44	212.77
COMA+Comm	\checkmark	1.0	66.78	0.95	130.20	0.90	182.13	0.86	219.75	0.77	245.00	0.90	172.97
		0.98	69.89	0.72	147.77	0.35	233.98	0.09	311.93	0.0	387.54	0.43	230.22
COMA	\checkmark	0.95	96.30	0.83	193.39	0.44	323.95	0.04	433.73	0.0	615.19	0.45	332.51
		0.90	139.13	0.43	248.67	0.12	477.53	0.01	633.55	0.0	883.10	0.29	476.40

Zhaoyi Song¹, Rongqing Zhang^{1*}, and Xiang Cheng²

Network and Machine Intelligence Lab

The Upper-Level Controller: IQL-based Subgoal Planner

Algorithm 1 IOL-based Subgoal Planner

: Initialize the shared replay buffer M and the exploration probability $\epsilon = 1$ 2: Initialize random parameters $\{\theta, \tilde{\theta}\}$ for the evaluation DQN $Q(\mathbf{r}, \mathbf{g}; \theta)$ and the target DQN $\tilde{Q}(\mathbf{r}, \mathbf{g}; \tilde{\theta})$, respectively. Initialize the lower-level state descirption s_i^0 and t_i ($i \in \{1, ..., M\}$) as the start and terminate states, respectively. Initialize the upper-level state description r_i and termination condition β_i $(i \in \{1, ..., M\})$. for each time step t do for each agent i do

> ▷ With a subgoal accomplished, the DQN parameters are updated. if $s_i^t \in \beta_i$ then Obtain extrinsic reward $f_i(r_i, g_i, r'_i)$, and store transition (r_i, g_i, f_i, r'_i) in the global replay buffer M Compute TD Target using $\tilde{\theta}$, and perform gradient descent on θ to minimize multi-step TD error. Anneal ϵ and repaire $\hat{\theta}$ with θ periodically.

 \triangleright If the target region has not yet been reached, assign a new subgoal. if $t_i \notin \beta_i$ then $q_i \leftarrow EpsGreedy\left(r_i, \mathcal{G}_i, \epsilon, Q\right)$

 $\beta_i, r'_i \leftarrow ExpandGoal(g_i)$

Sample a primitive action a_i^t via the lower-level controller. Execute a_i^t and observe next state s_i^{t+1}

Obtain intrinsic reward $\tilde{f}_i(s_i^t, a_i^t, s_i^{t+1})$, and update low-level actor and critic parameters.

> Residual Neural Network Empowered Observation Encoder • Extended from DHC [2], the heuristic channels are adopted considering all subgoals provide rich rational knowledge. • All heuristic maps can be computed and stored in advance. • The feature extractor has great generalization capability.

> Two-Stage Attentional Communication Mechanism

• Each agent communicates with its neighboring agents. • Inspired from G2ANet [4], a two-stage attention is adopted. • The gumble-softmax is utilized to enable back propagation. • A query-key mechanism is employed to weigh relevance.

> Training via Counterfactual Multi-Agent Policy Gradients • COMA [5] is employed as our low-level learning scheme.

• For each agent, an advantage function is computed

 $A_i(\mathbf{s}, \mathbf{a}) = Q(\mathbf{s}, \mathbf{a}) - \sum_{a'_i} \pi_i(a_i \mid \tau_i) Q(\mathbf{s}, (\mathbf{a}_{-i}, \mathbf{a}'_i))$

• The centralized critic reasons the contribution of each agent • A reasonable multi-agent credit assignment is achieved.

Conclusions

 Conclusions We propose the HELSA framework to tackle the problem of sparse reward and long horizon in large-scale multi-agent pathfinding problems. Experiments show that our approach performs significantly better in large-scale multi-robot routing tasks in success rates, makespans, and collision rates than state-of-the-art learning-based planners. The key idea of our hierarchical framework is beneficial to a number of similar problems with long horizon in terms of time and large scale in terms of space. 	
 Future Work In the future, we will evaluate our framework in different experimental scenarios, especially those with different agent and obstacle densities. We are interested in extending it from a discrete grid world to a continuous one. Experiments in real-world multi-robot systems are also on the agenda. 	
 G. Sartoretti, J. Kerr, Y. Shi, et al., "Primal: Pathfinding via reinforcement and imitation multi- agent learning," IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2378–2385, 2019. Z. Ma, Y. Luo, and H. Ma, "Distributed heuristic multi-agent path finding with communication," in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. Z. Ma, Y. Luo, and J. Pan, "Learning selective communication for multi-agent path finding," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1455–1462, 2021. Y. Liu, W. Wang, Y. Hu, et al., "Multi-agent game abstraction via graph attention neural network," in Proceedings of the AAAI Conference on Artificial Intelligence, 2020. J. Foerster, G. Farquhar, T. Afouras, et al. "Counterfactual multi-agent policy gradients." in Proceedings of the AAAI conference on artificial intelligence. Vol. 32. No. 1. 2018. 	