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Abstract— The Multi-Agent Path Finding (MAPF) problem
is a critical challenge in dynamic multi-robot systems. Recent
studies have revealed that multi-agent reinforcement learning
(MARL) is a promising approach to solving MAPF problems in
a fully decentralized manner. However, as the size of the multi-
robot system increases, sample inefficiency becomes a major
impediment to learning-based methods. This paper presents
a hierarchical reinforcement learning (HRL) framework for
large-scale multi-agent path finding, featuring applying spatial
and temporal abstraction to capture intermediate reward and
thus encourage efficient exploration. Specifically, we introduce a
meta controller that partitions the map into interconnected re-
gions and optimizes agents’ region-wise paths towards globally
better solutions. Additionally, we design a lower-level controller
that efficiently solves each sub-problem by incorporating heuris-
tic guidance and an inter-agent communication mechanism
with RL-based policies. Our empirical results on test instances
of various scales demonstrate that our method outperforms
existing approaches in terms of both success rate and makespan.

I. INTRODUCTION

In multi-robot systems, the ability to navigate effectively
and efficiently is crucial. Such systems may entail thou-
sands of automated mobile robots (AMRs) that have to
find collision-free paths in a collaborative manner [1]. The
Problem of multi-agent path finding is a challenging NP-hard
problem [2] with numerous variants [3], and it has been of
interest to researchers in the field of multi-agent systems ever
since its inception.

Various solution-oriented approaches have been proposed
for MAPF problems, which can be broadly classified as
coupled and decoupled. Coupled approaches treat all robots
as a single composite system, ensuring optimal and complete
solutions at the cost of high computational complexity,
making them less scalable as the number of agents increases.
Decoupled approaches, in contrast, perform single-agent
searches for each agent, reducing computational costs with
the sacrifice of completeness and optimality. However, these
solution-oriented approaches focus on computing complete
paths for all agents based on global information, which
inevitably requires either centralized coordination or sophis-
ticated distributed protocols.
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Fig. 1: Illustration of the HELSA framework

Real-time multi-robot applications require MAPF planners
that can handle the challenges of coordinating massive
AMRs and providing high response speed, scalability, and
flexibility. In such environments, unexpected events, such as
the sudden appearance of obstacles, can cause the planned
paths to become invalid, and new paths must be quickly
obtained to avoid collisions. Learning-based approaches with
decentralized execution have become more and more popular
in recent years since they are naturally suited to handling
these challenges, allowing for fast and flexible adaptation to
changing environments.

PRIMAL [4] proposed a novel approach that combines
reinforcement learning and imitation learning, which share
a common neural network to learn from demonstrations by
an expert MAPF planner and encourages free exploration.
Meanwhile, MAPPER [5] integrates a single-agent shortest
path as heuristic guidance into each agent’s observation
space. However, these approaches incorporate either a MAPF
planner or a single-agent path planner, which may con-
tain misleading information and be more time-consuming,
impairing their coordination learning and efficiency in the
centralized learning phase.

Recent research has focused on learning inter-agent com-
munication protocols to promote collaborative decision-
making [6], [7]. These approaches eliminate the negative im-
pact of independent decision-making under local information
and strengthen the connections among agents. They provide
an effective means of learning the coordination strategies that
enables agents to collaborate effectively, without requiring a



priori knowledge of the environment. By learning how to
communicate and coordinate with one another, agents can
learn to work together and find optimal paths quickly and
efficiently.

However, the use of learning-based MAPF planners for
large-scale scenarios poses a significant challenge due to
sample inefficiency. The data collection process of rein-
forcement learning is based on the interaction between the
agents and the environment, usually following a epsilon-
greedy exploration policy. As a result, the data collected may
contain duplicate and uninformative samples, providing little
feedback for policy and value learning, leading to slow and
inefficient training process. This challenge is compounded by
the fact that, in most learning-based MAPF methods, each
agent has to make lots of attempts to find a feasible route to
its goal before receiving any positive reward upon reaching
it. This delayed and sparse reward further exacerbates the
sample inefficiency, particularly as the scale of the training
scenarios increases. Furthermore, the partial observability
limits agents’ perception range, giving rise to the conver-
gence of RL models to oscillating or suboptimal policies,
further impairing the training efficiency.

We propose a novel and effective hierarchical multi-agent
decision-making scheme, termed as HELSA (i.e., Hierarchi-
cal rEinforcement Learning with Spatiotemporal Abstrac-
tion), to address challenges stemming from the delayed
and sparse reward in large-scale MAPF and the limited
perception due to partial observability. Inspired by recent
advancements in two-stage object detectors [8], the proposed
framework decomposes an RL task into a hierarchy of
subproblems, as illustrated in Fig. 1. The upper-level policy
learns how to partition the task into several shorter-horizon
subgoals over a long period, which is often referred to as
temporal abstraction [9]. Specifically, vertices on the map
are partitioned into rectangular and interconnected regions,
with an upper-level controller producing optimal subgoals
as the macro-actions for longer timescales. The subgoals
are the next region that each agent will navigate towards,
which is the temporally and spatially extended courses of
actions, regarded as spatial abstraction. The spatiotemporal
abstraction gives rise to more structured exploration and
enlarges agents’ perception range at a relatively small cost.
It also enables efficient credit assignment over a long course
of training. The lower-level controller then refines the coarse
macro paths, planning a collision-free path to accomplish
the subgoals within a shorter horizon. Each subgoal is
formulated as a multi-goal, multi-agent pathfinding problem,
with the temporal goals of agents clustered along the regions’
boundaries instead of randomly scattered.

We then develop an effective hierarchical multi-agent
reinforcement learning algorithm, comprising two MARL
models, to tackle the challenging large-scale MAPF problem.
The hierarchy of controllers collectively determines agents’
behaviors in two stages, solving MAPF instances at different
granularities and capturing intermediate rewards to enrich
agents’ feedback from exploration, making agents’ policies
more far-sighted. We conduct extensive experiments compar-

ing our proposed approach with other SOTA learning-based
approaches, namely PRIMAL [4], DHC [6], and DCC [7].
The results indicate that our approach plans shorter paths
with higher success rates and fewer collisions in large-scale
multi-agent scenarios. The solutions of our approach scale
linearly with the problem scope due to the successful prob-
lem decomposition and interplay of the hierachical policies.

The main contributions of this work are three-fold:
• We propose HELSA, a novel and effective multi-agent

HRL scheme, which leverages a hierachy of heuristics,
making RL approaches more applicable to large scale
routing and planning scenarios.

• HELSA decomposes the long-horizon scheduling prob-
lem into several easier-to-learn subproblems. To accom-
plish this, we design an upper-level intra-region plan-
ning algorithm that applies a fully cooperative MARL
approach to optimize the routes of multiple robots
towards globally better solutions based on partially
observable regional information.

• As for the lower-level inter-region planning stage, we
formulate a constrained multi-goal multi-agent pathfind-
ing problem and introduce a two-stage attentional
communication mechanism and heuristic guidance to
simplify the constraints and facilitate collaborative
decision-making.

II. PROBLEM FORMULATION

In this section, we present the formulation of the MAPF
problem, along with the two-stage decision-making scheme.

Problem. The problem we consider in this paper is the
classic MAPF problem, as described in [10]. We are given
a connected undirected graph G = (V,E), where vertices
V denote locations that agents can occupy, and edges E
connect adjacent vertices along which the agents can move.
Additionally, we are given a set of M agents, {i|i ∈
{1, . . . ,M}}, each with a unique start vertex, si ∈ V , and a
unique target vertex, ti ∈ V . At each discrete time step, each
agent, i, executes an action, ũi

t, which involves moving to
an adjacent vertex or staying at its current vertex, potentially
giving rise to collisions with other agents or obstacles. The
path for the i-th agent is a sequence of adjacent or identical
vertices that starts at si and terminates at ti. We formulate
the MAPF problem as a sequential decision-making problem
whose ultimate goal is to find collision-free paths for all
agents, while minimizing the sum of costs (i.e., the sum of
arrival times of all agents at their goal vertices), given the
following assumptions.

Assumptions. 1) Each agent has limited access to the
information in the grid world, confined to a square field of
view (FoV) of size l× l, where l is an odd number, ensuring
that the agent is at the center of its FoV. 2) In contrast
to MAPPER [5], where agents are removed from the map
upon reaching their goals, this paper assumes that agents
remain on the map until all agents have reached their goals.
However, agents may not stay at their goal vertices in case
they hinder other agents from reaching their goal vertices. 3)
Agents can only communicate with their neighboring agents



Fig. 2: Overview of the proposed framework. The meta controller perceives region-wise observations (denoted by r) and
produces a policy over subgoals. The controller obtains vertex-wise observations (denoted by o) and produces a policy
over primitive actions to accomplish the subgoal. The internal critic provides intrinsic reward to the controller based on
the subgoals. The controller terminates either when the episode ends or when the subgoal is achieved. The meta controller
repeatedly selects new subgoals until the task is completed or the episode ends.

within their communication range, which, in practice, is the
same as the size of the agent’s FoV, at a specific bandwidth.
4) The session between neighboring robots begins and ends
instantly, without delay, in comparison to the time it takes
for an agent to move. In other words, agents make decisions
after sufficient exchanges of information.

A. Upper level: Intra-Region Path Planning

This paper focuses on MAPF instances in a 2D 4-neighbor
grid world, where each agent or obstacle occupies precisely
one grid. The framework partitions the grids into rectangular
regions of equal size, determined by parameters Wr and
Hr, which specify the width and height of each region,
respectively.

We present a model for the hierarchical path planning
using a factored Dec-POMDP model [11], which extends the
standard Dec-POMDP model to long-horizon tasks where
the transition time varies. The set of all regions, r, is R,
where each node represents a region, and edges denote
connections between neighboring regions in a directed graph,
G̃ = (R, Ẽ). Each region can accommodate multiple agents,
allowing agents to travel through regions without collisions.
Similar to standard MAPF, the i-th agent has a starting
region, ri0, and a terminate region, rig , while multiple agents
are likley to share their starting and termination regions.

1) Upper-level Observation Representation: The
upper-level observation features are characterizedbyatriad
〈N , T , H̃〉, where N represents the current number of
agents in the surrounding regions, T indicates the number
of agents whose next target region is one of these regions,
and H̃ represents a four-layer one-hot encoding of the
heuristic maps, which is illustrated in Fig. 4. Significantly,
though no obstacles are present on the region-wise map, the
upper-level heuristic maps take into account cases where
there is no valid path connecting two adjacent regions. This

is because the heuristic maps are computed based on the
shortest valid single-agent paths, as detailed in Sec. III-B.
The perceptions of the upper-level controller are bounded,
and agents can only access information from nearby 5 × 5
regions with the agent’s current region as the center.

2) Subgoals: As mentioned earlier, we use the notion
subgoals (or macro-actions) to refer to our generalization
of actions to include temporally extended courses of actions.
We assume that Gi represents a finite set of subgoals for each
agent, i, with G = ×iGi as the set of joint subgoals. A local
subgoal of agent, i, can be denoted by a triad:

Gi = 〈Igi ,βgi ,πgi〉, (1)

consisting of an initiation set Igi ⊆ Si, a stochastic termina-
tion condition βgi : Si → [0, 1], and a policy πgi : Si×Ai →
[0, 1]. In the context of HELSA, a subgoal can be described
as identifying the next region that an agent plans to head
for. In this case, a subgoal consists of a lower-level path
finding policy, which is discussed in Sec. II-B, a termination
condition for recognizing that the agent has reached the next
region’s boundary, and an initiation set containing states in
which the agents are located at a newly arrived region.

The upper-level controller keeps track of when lower-level
actions terminate, i.e., when the agent reaches the new region
or its goal vertex, which is precisely when the agent needs
to take a new macro-action.

3) Extrinsic Reward: We define the extrinsic reward func-
tion as F : R × G → {0, 1}. The extrinsic reward signals
received from the environment are positive if and only if the
agent reaches its target vertex. The objective of the upper-
level controller is to maximize cumulative extrinsic reward
over long periods of time.



B. Lower level: Inner-Region Path Planning

The subtask assigned to the lower level is to achieve the
subgoal derived from the upper level, which is to move to the
boundaries between the current region and the next region
as soon as possible while simultaneously avoiding collisions
with other agents and obstacles. Suppose that the agent is
at the goal region. In that case, the subgoal is precisely the
final goal vertex of the agent, which is a particular case where
only one subgoal vertex exists, and it does not necessarily
locate at the boundary of the region. We now formulate the
lower-level inner-region path planning problem with a Dec-
POMDP model.

1) Lower-level Observation Representation: As previ-
ously mentioned, agents observe the environment inside their
field of view. The observation information is grouped into
three parts, which can be denoted by a triad 〈A,O,H〉.
Specifically, A and O are two binary matrices representing
the locations of other agents and obstacles within the FoV, re-
spectively. In addition, unlike in PRIMAL [4], where agents’
targets are represented by a normalized vector pointing to
their goals, we add 4-layer heuristic representations, H, to
the observation encoder, as illustrated in Fig. 4. The heuristic
maps are more succinct and provide rich rational knowledge.

2) Primitive Actions: Agents move cardinally or stay still
in the grid world at each discrete time step. During training
and execution, agents may run into obstacles or collide with
other agents from time to time, which would be fatal in a
real-world deployment. Since the action space is relatively
small, we do not mask out invalid actions, as as is done in
most current approaches. Instead, we give negative rewards
for these invalid actions during training. Once a collision
occurs, we recursively recover the affected agents to their
previous states until no collision exists. The experimental
results in Sec. IV-D show that the number of collisions are
under controll compared with other baselines.

3) Intrinsic Reward: Agents are subject to a penalty
of -0.025 for each time step they do not remain at their
designated goal vertices. This incentivizes agents to seek
shorter paths to their goals. An agent receives a large positive
intrinsic reward of 5 only upon accomplishing a subgoal,
motivating them to work towards achieving intermediate
objectives. When no collision occurs, the reward for the team
is the average of each agent’s reward. However, to discourage
collisions, the team of agents receives a negative reward of
-5 when any agents collide with an obstacle or other agents.

III. THE PROPOSED APPROACH

In this paper, considering the challenges mentioned above,
we propose the HELSA scheme to decouple the large-
scale MAPF problems with spatiotemporal hierarchies. The
proposed framework contains two levels of decentralized
planners, the architecture of which is illustrated in Fig. 2.

A. Upper-level Subgoal Planning Method

Given the discrete action spaces of the upper-level subgoal
planning sub-problem, we adopt the dueling DQN to solve
the sub-problem for each agent with fast convergence. The

detailed designs of the IQL-based algorithm are specified as
follows.

1) IQL with Multi-Step TD Learning: To avoid confusion
with lower-level states, we use the notion of r to refer
to upper-level states. The independent Q-learning (IQL)
estimates the following optimal Q-value function:

Q∗(r, g) = max
πg

E

󰀥
t+N󰁛

t′=t

ft′ + γmax
g′

Q∗ (rt+N , g′)

󰀦
(2)

where N denotes the number of time steps until the lower-
level controller halts given the current goal. It is noteworthy
that the subgoal is not a triad as previously mentioned, but a
moving action in cardinal directions that indicates the relative
direction of the next region.

To improve the sample efficiency, we adopt a multi-step
bootstrapping technique, where the loss function is a multi-
step TD error,

L(θ) = Huber (yi(t)−Qi (ri(t), gi(t); θi)) (3)

with the multi-step TD target,

yi(t) =

m−1󰁛

j=0

γjfi(t+ j) + γm max
gi

Q̃i

󰀓
ri(t+m), gi; θ̃i

󰀔
,

(4)
where

󰁓m−1
j=0 γjfi(t+ j) is the expected extrinsic return of

the i-th agent in the following m steps, ri(t) and gi(t) are the
upper-level state and subgoal representation of the i-th agent
in the t-th time step, and θ̃ denotes the parameters of the
target network, which is a periodical copy of the evaluation
network parameters θ.

2) Distributed Priority Experience Replay: To increase
the probability of learning high-reward sparse behavior, the
HELSA adopts the distributed priority experience replay
(PER) technique [12]. Instead of randomly selecting state-
action pairs from the global experience replay buffer, the
PER stores past experiences in a priority tree, where state-
action pairs with higher step rewards have a higher proba-
bility of being sampled. This approach helps to improve the
sample efficiency of the algorithm.

The observation encoder in the upper level follows the
same structure as that in the lower level, as descirbed in
Sec. III-B.

B. Communication-based Inter-Region Planning Method

Inspired by the heuristic guidance used in DHC [6] and
graph attention networks used in MAGAT [13], for the lower-
level planning sub-problem, we propose a communication-
based method that incorporates the heuristic guidance to in-
dicate goal locations and the two-stage attention mechanism
to build a dynamic communication topology and determine
the relative importance of the information exchanged.

1) CNN-based Observation Encoder: We extend the
heuristic guidance proposed in [6] to multi-goal scenarios,
as illustrated in Fig. 4. In cases where no obstacle exists
on the map, there is always a unique shorted path toward
the region’s border. However, agents may have multiple



Algorithm 1 IQL-based Subgoal Planner

1: Initialize the shared replay buffer M and the exploration probability 󰂃 = 1.
2: Initialize random parameters {θ, θ̃} for the evaluation DQN Q(r,g; θ) and the target DQN Q̃(r,g; θ̃), respectively.
3: for each episode do
4: Initialize the lower-level state descirption s0i and ti (i ∈ {1, . . . ,M}) as the start and terminate states, respectively.
5: Initialize the upper-level state description ri and termination condition βi (i ∈ {1, . . . ,M}).
6: for each time step t do
7: for each agent i do
8: if sti ∈ βi then ⊲ With a subgoal accomplished, the DQN parameters are updated.
9: Obtain extrinsic reward fi(ri, gi, r

′
i), and store transition (ri, gi, fi, r

′
i) in the global replay buffer M .

10: Compute TD Target using θ̃, and perform gradient descent on θ to minimize multi-step TD error.
11: Anneal 󰂃 and repalce θ̃ with θ periodically.
12: if ti /∈ βi then ⊲ If the target region has not yet been reached, assign a new subgoal.
13: gi ← EpsGreedy (ri,Gi, 󰂃, Q)
14: βi, r

′
i ← ExpandGoal(gi)

15: Sample a primitive action ati via the lower-level controller.
16: Execute ati and observe next state st+1

i .
17: Obtain intrinsic reward f̃i(s

t
i, a

t
i, s

t+1
i ), and update low-level actor and critic parameters.

potential optimal choices when taking into consideration
the existence of obstacles. To obtain intuitive heuristics, the
algorithm performs breadth-first search to obtain the lengths
of shortest paths from each vertex to the given subgoals.
Then the four channels illustrated in Fig. 4 are obtained,
with each element representing a boolean value indicating
a shorter distance away from the subgoals after executing
the candidate action. Since all potential subgoals can be
determined after the partition of the map, both the upper-
level and lower-level heuristic maps can be computed in
advance. During execution, a fraction of these maps can be
sampled based on the agents’ locations and FoV. We stack the
heuristic channels along with the obstacle map and agent map
and extract features using a CNN-based encoder. Between the
stacked residual blocks, a skip connection joins together the
features before and after the block. This structure is of great
benefit to the generalization capability of feature extractors.

2) Two-Stage Attentional Communication: Each agent has
a local share of the graph convolutional layers and commu-
nicates its observation encodings eti with neighboring agents
within its communication radius. Through this the agent
enlarges its perception range and reinforces the connection
between other agents. The fused observation features are then
fed into the next module to perform decentralized decision-
making with enriched information.

Inspired by G2ANet [14], we adopt a 2-stage attention
mechanism to model the interplay of agents, where each
agent does not have to cooperate with all nearby agents, and
the extent to which each pair of agents is associated varies.
As shown in Fig. 3, we model the relationship between
agents using a graph, where each agent is a vertex and each
relationship between neighboring agents is an edge. For each
agent, i, we merge embeddings of agent i and j using an
LSTM model:

hi,j = FC(LSTM(hi, hj)), (5)

where FC(·) represents a fully connected layer. We also
employ a BiLSTM model to eliminate the input order’s
influence and capture all agents’ information equally.

The hard attention model, whose value is calculated by
Equ. 6, is a binary operator that specifies which agents each
agent needs to interact with and discards the connection
with the less relevant agents entirely, through which the
agents focus on essential elements and the preliminary game
abstraction can be achieved.

W i,j
h = Gumble(hi,j), (6)

where Gumble(·) represents the gumble-softmax function
employed to facilitate back propagation, which cannot be
achieved by hard attention.

We also train a soft attention model to determine the
weight W i,j

s of each edge in the graph G using a query-key
mechanism, which represents the contributions from other
agents to the learning agent ai.

W i,j
s ∝ exp

󰀓
eTj W

T
k WqeiW

i,j
h

󰀔
(7)

with Wk transforming ej into a key as well as Wq trans-
forming ei into a query. The final term W i,j

s represents the
weight of each edge.

3) Training via COMA: Unlike previous learning-based
MAPF approaches, which are usually based on independent
Q-learning and suffer from insufficient information sharing,
we adopt an effective policy-gradient-based learning scheme
counterfactual multi-agent policy gradients (COMA). In this
scheme, a centralized critic assesses the contribution of each
agent’s actions to the whole team’s global return, promoting
globally optimum policies. While the centralized critic is
only required during training, only the actor net is needed
during execution.

The key insight underlying COMA is for each agent i to
compute an advantage function by subtracting the estimated



Fig. 3: The proposed lower-level planning framework.

Fig. 4: Heuristic map calculated in the perspective of the
green agent. The red flags represent the temporary subgoals,
and the gray grids represent obstacles. The four channels
indicate whether the agent gets closer to its subgoals by
taking the certain action at these locations within agent’s
FoV respectively.

return for the current joint action with a counterfactual
baseline that marginalizes out the agent’s current action ai:

Ai(s,a) = Q(s,a)−
󰁛

a′
i

πi (ai | τi)Q (s, (a−i,a
′
i)) , (8)

where s and a represent the joint action and state of all
agents, respectively, and τi represents the observation-action
trajectories. The subtrahend constitutes the counterfactual
baseline iterating over all possible actions of agent i except
its current action while keeping all other agents’ actions
fixed.

With the help of the advantage function, the centralized
critic reasons the contribution of each agent to the team’s suc-
cess and performs a reasonable multi-agent credit assignment
while avoiding potentially expensive simulations. To further
compress the output space of the network, the representation

TABLE I: Test scenario sets for experiments. Each scenario
contains 100 randomly generated cases with the robot density
fixed at 0.005 and the obstacle density fixed at 0.2.

map size n robots n obstacles max epi len

40 × 40 8 320 256
80 × 80 32 1280 512

160 × 160 128 5120 1024
240 × 240 288 11520 1536
320 × 320 512 20480 2048
400 × 400 800 32000 2560

of the critic, of which the size scales linearly with the number
of agents and actions, is adopted, allowing for efficient
baseline evaluation and enabling great generalization.

It should be noted that partitioning the map into regions
does not imply that each region maintains an independent
MARL environment. The upper level only serves as a way
to provide subgoals and simplify the task, making the overall
learning process more efficient. The interactions between
agents are still modeled at the lower level, within and across
regions, through the lower-level controllers, comprising a
common critic and M actors with parameter sharing.

IV. EMPIRICAL EVALUATION

A. Metrics

The metrics of evaluation are listed as follows.
1) Success Rate (SR): The proportion of successful cases

over the total number of tested cases. A case is consid-
ered successful or complete when all robots reach their
goals before exceeding the maximum allowed steps,
which is specified in Tab. I.

2) Average Steps (AS): The average number of time steps
that all agents take to reach their respective goals, i.e.,
the average length of all agents’ paths.



TABLE II: Overall performance comparison. All results are the average values of the 100 randomly generated test cases. In
each column, ↑ indicates that higher values are preferred while ↓ indicates the opposite. The best result in each column is
shown in bold, with results generated by our approach additionally highlighted in red.

Model 8 agents, 40-sized map, 0.2 density 32 agents, 80-sized map, 0.2 density 128 agents, 160-sized map, 0.2 density
SR ↑ AS ↓ MS ↓ CA ↓ CO ↓ SR ↑ AS ↓ MS ↓ CA ↓ CO ↓ SR ↑ AS ↓ MS ↓ CA ↓ CO ↓

PRIMAL [4] 1.0 56.49 98.90 0.42 0.0 0.88 164.39 305.73 4.12 0.0 0.07 356.51 1007.08 113.06 4.27
DHC [6] 1.0 31.40 55.77 0.38 0.0 0.98 69.18 139.77 3.20 0.0 0.87 132.31 399.19 29.38 0.06
DCC [7] 1.0 28.84 50.49 0.40 0.0 0.98 64.47 134.34 5.91 0.01 0.67 149.50 567.41 37.48 0.0
HELSA 1.0 29.71 52.29 0.21 0.0 1.0 65.85 136.17 0.54 0.0 0.97 126.51 296.14 3.69 0.0

Model 288 agents, 240-sized map, 0.2 density 512 agents, 320-sized map, 0.2 density 800 agents, 320-sized map, 0.2 density
SR ↑ AS ↓ MS ↓ CA ↓ CO ↓ SR ↑ AS ↓ MS ↓ CA ↓ CO ↓ SR ↑ AS ↓ MS ↓ CA ↓ CO ↓

PRIMAL [4] 0.0 530.06 1536.0 593.59 34.48 0.0 736.50 2048.0 1498.20 173.49 - - - - -
DHC [6] 0.70 193.13 804.55 99.52 0.01 0.53 252.62 1304.48 236.22 0.30 0.40 315.08 1906.36 468.61 0.71
DCC [7] 0.19 235.32 1375.04 151.88 12.97 0.04 300.78 2020.76 423.40 57.41 - - - - -
HELSA 0.93 175.56 629.58 49.41 0.03 0.87 221.17 935.99 101.78 0.04 0.74 268.83 1211.15 269.67 0.37

(a) success rates

(b) average steps

Fig. 5: Simulation results of our approach with different
region sizes at test scenarios described in Tab. I.

3) Makespan (MS): The maximum number of time steps
for all agents to reach their goals, i.e., the length of
the longest path among all agents.

4) Collisions with Agents (CA): The number of edge and
vertex conflicts with other agents.

5) Collisions with Obstacles (CO): The number of colli-
sions with obstacles.

B. Experimental Setup

To compare the generalization capability of our proposed
approach with other baselines, we prepare test datasets

according to Tab. I. We train our models with 40× 40 maps
and 8 robots with a fixed obstacle density of 20% and then
test on all scenarios shown in Tab. I.

The size of FoV is 11 × 11 for the proposed lower-level
planner as well as for all other baselines, where the agent
is at the center of the FoV. The maximum allowed step size
during training is 256. The size of each region is 10 × 10
and the effect of the region size is studied in Sec. IV-E.

As for the training settings, the upper-level model is
trained with a batch size of 32. The discount factor in
the calculation of multi-step TD error in Equ. 4 is set to
γ = 0.99, and the length of the steps is set to 2. The
lower-level planner is trained by optimizing the actor and
critic networks, both of which are trained via the RMSProp
optimizer with a learning rate of 0.001 and a decay rate of
α = 0.99.

C. Baselines

in Sec. IV-D, we compare the HELSA with one of the most
distinguished approaches named PRIMAL [15], and two
most recent communication-based planners named DHC [6]
and DCC [7].

In Sec. IV-F, we build two ablations with simpler lower-
level controllers to evaluate whether the two-stage attentional
communication mechanism in the proposed lower-level con-
troller works.

D. Results

Tab. II shows the comparison between our proposed
HELSA framework and other baselines in various scales
of test scenarios with fixed robot and obstacle density.
Our approach outperforms PRIMAL in all the test cases
in terms of success rate, average steps, and makespans,
especially in the larger maps. This comparison indicates
that it is challenging for the fusion of imitation learning
and reinforcement learning in PRIMAL to strike a balance
between exploration and exploitation, which makes PRIMAL
hard to extend to large-scale and long-horizon tasks. The two
communication-based approaches yield excellent results in
relatively small-scale scenarios, primarily due to sufficient
information exchange among agents and informative obser-
vation encodings. Considering the inevitable information loss



TABLE III: Evalutaion of the adopted lower-level controller with other ablations in terms of success rates and average steps.

Method w/ hierarchy? 80-sized map 160-sized map 240-sized map 320-sized map 400-sized map Avg.
SR ↑ AS ↓ SR ↑ AS ↓ SR ↑ AS ↓ SR ↑ AS ↓ SR ↑ AS ↓ SR ↑ AS ↓

COMA+Comm 󰃀 1.0 65.85 0.97 126.51 0.93 175.56 0.87 221.17 0.74 268.83 0.90 171.58
+Attention 0.98 67.25 0.76 141.95 0.41 219.03 0.07 287.99 0.0 347.63 0.44 212.77

COMA+Comm 󰃀 1.0 66.78 0.95 130.20 0.90 182.13 0.86 219.75 0.77 245.00 0.90 172.97
0.98 69.89 0.72 147.77 0.35 233.98 0.09 311.93 0.0 387.54 0.43 230.22

COMA 󰃀 0.95 96.30 0.83 193.39 0.44 323.95 0.04 433.73 0.0 615.19 0.45 332.51
0.90 139.13 0.43 248.67 0.12 477.53 0.01 633.55 0.0 883.10 0.29 476.40

caused by problem decomposition, it is not surpirsing that
our approach leads to longer steps for agents to reach their
goals. It is essential to note that though DCC performs better
than DHC and HELSA in smaller scenarios due to its focus
on important relations, it experiences rapid deterioration of
performance as the scenarios become larger. This indicates
that sufficient information exchange is a key factor in large-
scale planning. Through the hierarchical decision-making
framework, each agent makes decisions based on information
beyond its lower-level perception and communication range
and collaborate with more distant agents in an indirect way
through intra-region cooperation. The hierarchy of policies
is more robust and scales linearly with the scope of the
problem, which can be inferred from the simulation results
of larger-scale scenarios.

E. Study on the Effects of Partitioning Granularity

The configuration of region size is an important hyperpa-
rameter that presents a dilemma: a small region size puts to
much burden on the upper-level controllers, aggravating the
performance degradation caused by problem decomposition,
while a large region size can make a solution gradually
degenerate into one without hierarchical coordination. We
conduct extensive experiments with different region sizes in
the test scenarios with various scopes, and the results are
shown in Fig. 5. Our finding suggest that when region size
of the execution phase is close to the that of the training
phase, which is 10 in practice, the algorithm yields the
highest success rates. Conversely, the solutions get worse as
the granularity gets finer or coarser, i.e., the region size gets
smaller or lager, resulting in a mountain valley distribution.

F. Ablation Studies

We evaluated the effectiveness of the two-stage commu-
nication mechanism in the lower-level controller by intro-
ducing two ablations with simpler structures. The results,
shown in Tab. III, demonstrate that the communication
mechanism dramatically improves success rates in all of
the test scenarios. However, we also observed that while
the two-stage attention mechanism can facilitate collborative
decision making in relatively small scenarios, the discard
of some messages or connections may harm coordination
in larger scenarios, which confirms our previous conclusion.
We also noticed that no matter which lower-level controller
is adopted, the hierarchical framework can improve success
rates in a great measure.

V. CONCLUSIONS

This paper addresses the large-scale MAPF problem. We
propose the HELSA framework to tackle the problem of
sparse reward and long horizon. Experiments show that our
approach performs significantly better in large-scale multi-
robot routing tasks in success rates, makespans, and collision
rates than state-of-the-art learning-based planners.
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