### HELSA: Hierarchical Reinforcement Learning with Spatiotemporal Abstraction for Large-Scale Multi-Agent Path Finding



Zhaoyi Song<sup>1</sup>, Rongqing Zhang<sup>1\*</sup>, and Xiang Cheng<sup>2</sup>

<sup>1</sup> NaMI Lab, School of Software Engineering, Tongji University, P.R. China

<sup>2</sup> School of Electronics Engineering and Computing Science, Peking University, P.R. China



## Background

The Multi-Agent Pathfinding (MAPF) Problems









\* Images retrieved from https://www.cs.sfu.ca/~hangma/, Amazon Robotics and SuperStock.

## **Key Challenges**

Sparse Rewards in Large-scale Reinforcement Learning



### Overview

### Solution: Hierarchical Reinforcement Learning





Fig. 1: Illustration of the HELSA framework



## **The Proposed Framework**

### 01 Map Partition

**Divide** the space into a series of **regions** based on hyperparameters.





### **Temporal Abstraction**

**Decompose** long-term tasks on a temporal scale into **short-term tasks** 





### Subtask Solver

**Solve** constrained multigoal multi-agent pathfinding problems





## **Lower-Level Controller**

#### **Observation Encoder**

- Agents positions
- Obstacle positions
- Heuristic encodings
- Last-step messages

#### **Communication Block**

- Hard attention mechanism to filter out irrelevant agents
- Soft attention to calculate relative importance

#### **Action Network**



### **Empirical Analysis on Randomly Generated Datasets**

HELSA (ours)

-V- DHC (ICRA'21)

160x160 (128) 240x240 (288) 320x320 (512) 400x400 (800)

DCC (RA-L'21) PRIMAL (RA-L'19)

#### Evaluation Metrics

- Success Rates
- Average Steps
- Makespans
- Collisions with Agents
- Collisions with Obstacles

#### Success Rates

80x80 (32)

1.0

0.8

Success Rate

0.2

0.0

40x40 (8)





| Model      | 8 agents, 40-sized map, 0.2 density    |                 |                 |                |                | 32 agents, 80-sized map, 0.2 density   |                 |                 |                |        |      | 128 agents, 160-sized map, 0.2 density |                 |                |                |  |
|------------|----------------------------------------|-----------------|-----------------|----------------|----------------|----------------------------------------|-----------------|-----------------|----------------|--------|------|----------------------------------------|-----------------|----------------|----------------|--|
|            | SR ↑                                   | AS↓             | MS ↓ Î          | CA ↓           | Ċo ↓           | SR ↑                                   | AS ↓            | MS $\downarrow$ | CA↓            | Ċo ↓   | SR ↑ | AS↓                                    | MS $\downarrow$ | CA ↓           | CO↓            |  |
| PRIMAL [4] | 1.0                                    | 56.49           | 98.90           | 0.42           | 0.0            | 0.88                                   | 164.39          | 305.73          | 4.12           | 0.0    | 0.07 | 356.51                                 | 1007.08         | 113.06         | 4.27           |  |
| DHC [6]    | 1.0                                    | 31.40           | 55.77           | 0.38           | 0.0            | 0.98                                   | 69.18           | 139.77          | 3.20           | 0.0    | 0.87 | 132.31                                 | 399.19          | 29.38          | 0.06           |  |
| DCC [7]    | 1.0                                    | 28.84           | 50.49           | 0.40           | 0.0            | 0.98                                   | 64.47           | 134.34          | 5.91           | 0.01   | 0.67 | 149.50                                 | 567.41          | 37.48          | 0.0            |  |
| HELSA      | 1.0                                    | 29.71           | 52.29           | 0.21           | 0.0            | 1.0                                    | 65.85           | 136.17          | 0.54           | 0.0    | 0.97 | 126.51                                 | <b>296.14</b>   | 3.69           | 0.0            |  |
| Model      | 288 agents, 240-sized map, 0.2 density |                 |                 |                |                | 512 agents, 320-sized map, 0.2 density |                 |                 |                |        |      | 800 agents, 320-sized map, 0.2 density |                 |                |                |  |
|            | SR ↑                                   | AS $\downarrow$ | MS $\downarrow$ | $CA\downarrow$ | $CO\downarrow$ | SR ↑                                   | AS $\downarrow$ | $MS \downarrow$ | $CA\downarrow$ | CO ↓   | SR ↑ | AS $\downarrow$                        | MS $\downarrow$ | $CA\downarrow$ | $CO\downarrow$ |  |
| PRIMAL [4] | 0.0                                    | 530.06          | 1536.0          | 593.59         | 34.48          | 0.0                                    | 736.50          | 2048.0          | 1498.20        | 173.49 | -    | -                                      | -               | -              | -              |  |
| DHC [6]    | 0.70                                   | 193.13          | 804.55          | 99.52          | 0.01           | 0.53                                   | 252.62          | 1304.48         | 236.22         | 0.30   | 0.40 | 315.08                                 | 1906.36         | 468.61         | 0.71           |  |
| DCC [7]    | 0.19                                   | 235.32          | 1375.04         | 151.88         | 12.97          | 0.04                                   | 300.78          | 2020.76         | 423.40         | 57.41  | -    | -                                      | -               | -              | -              |  |
| HELSA      | 0.93                                   | 175.56          | 629.58          | <b>49.41</b>   | 0.03           | 0.87                                   | 221.17          | 935.99          | 101.78         | 0.04   | 0.74 | 268.83                                 | 211.15          | 269.67         | 0.37           |  |

Map Size (Num of Agents)

## **Empirical Analysis**

### How does the partitioning granularity effect the performance of HELSA?



#### Does the two-stage attention communication lead to better coordination?

TABLE III: Evalutaion of the adopted lower-level controller with other ablations in terms of success rates and average steps.

| Method     | w/ hierarchy? | 80-sized map |                 | 160-sized map |                 | 240-sized map |                 | 320-sized map |                 | 400-sized map |                 | Avg. |                 |
|------------|---------------|--------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|------|-----------------|
|            |               | SR ↑         | AS $\downarrow$ | SR ↑          | AS $\downarrow$ | SR ↑          | AS $\downarrow$ | SR ↑          | AS $\downarrow$ | SR ↑          | AS $\downarrow$ | SR ↑ | AS $\downarrow$ |
| COMA+Comm  | $\checkmark$  | 1.0          | 65.85           | 0.97          | 126.51          | 0.93          | 175.56          | 0.87          | 221.17          | 0.74          | 268.83          | 0.90 | 171.58          |
| +Attention |               | 0.98         | 67.25           | 0.76          | 141.95          | 0.41          | 219.03          | 0.07          | 287.99          | 0.0           | 347.63          | 0.44 | 212.77          |
| COMA+Comm  | $\checkmark$  | 1.0          | 66.78           | 0.95          | 130.20          | 0.90          | 182.13          | 0.86          | 219.75          | 0.77          | 245.00          | 0.90 | 172.97          |
|            |               | 0.98         | 69.89           | 0.72          | 147.77          | 0.35          | 233.98          | 0.09          | 311.93          | 0.0           | 387.54          | 0.43 | 230.22          |
| СОМА       | $\checkmark$  | 0.95         | 96.30           | 0.83          | 193.39          | 0.44          | 323.95          | 0.04          | 433.73          | 0.0           | 615.19          | 0.45 | 332.51          |
|            |               | 0.90         | 139.13          | 0.43          | 248.67          | 0.12          | 477.53          | 0.01          | 633.55          | 0.0           | 883.10          | 0.29 | 476.40          |

HELSA w/ hierarchical controllers



HELSA w/ only low-level controllers



80x80-sized map, 32 agents, 20% obstacle density

HELSA w/ hierarchical controllers



GOOD Case! Succeeded at 122<sup>th</sup> step

### HELSA w/ only low-level controllers



BAD Case! Agent 16 failed its job



Showcase of a challenging 400x400-sized scenario, with 800 agents and 32,000 obstacles

All agents reach their destinations at the 746<sup>th</sup> timestep





maze-32-32-2 from mapf.info (SoCS'19, a challenging benchmark), 64 agents



N

### HELSA

### DCC (R-AL' 21)



12

warehouse-10-20-10-2-2 from mapf.info (SoCS'19), 256 agents



13

## **Thanks for Listening!**

Network and Machine Intelligence Lab

THE REAL PROPERTY OF THE PARTY OF THE PARTY



### HELSA: Hierarchical Reinforcement Learning with Spatiotemporal Abstraction for Large-Scale Multi-Agent Path Finding

Zhaoyi Song<sup>1</sup>, Rongqing Zhang<sup>1\*</sup>, and Xiang Cheng<sup>2</sup>

<sup>1</sup> NaMI Lab, School of Software Engineering, Tongji University, P.R. China

<sup>2</sup> School of Electronics Engineering and Computing Science, Peking University, P.R. China